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Abstract

We study the problem of estimating the log spectrum of a stationary Gaussian
time series by thresholding the empirical wavelet coefficients. We propose the use of
thresholds ¢; , depending on sample size n, wavelet basis 3 and resolution level j. At

fine resolution levels (j=1,2,...), we propose
tin = a; logn,

where {a;} are level-dependent constants and at coarse levels (j > 1)
™
tin = —+/logn.
7N \/g g

The purpose of this thresholding level is to make the reconstructed log-spectrum as
nearly noise-free as possible. In addition to being pleasant from a visual point of view,
the noise-free character leads to attractive theoretical properties over a wide range of
smoothness assumptions. Previous proposals set much smaller thresholds and did not
enjoy these properties.
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1 Introduction

Suppose we want to study a time series from an observed segment of the series X, ..., Xn.

There are two aspects to the study of time series — analysis and modelling. The aim of
analysis is to understand the nature of the process. The main reason for modelling a time
series is to enable forecasts of future values of the process. No forecasting can be made
before we understand the salient features of the process being characterized.

The analysis of a time series can be done either in the time domain or in the frequency
domain. In the time domain, attention is focused on the relationship between observations
at different points in time, e.g. ARMA models; while in the frequency domain it is cyclical -
movements which are studied and this can be done by studying the spectral density h.
The two forms of analysis are complementary rather than competitive. They give different
insights into the nature of the process.

Our goal in this paper is to estimate h from the data Xi,..., Xy. Here

h(w) = 517—1’- > () cos(sw).

$==00
The techniques currently used in spectral analysis are:

¢ Window methods (also known as kernel methods), §6.2.3 of Priestley (1981). A spec-
tral window (also called weight function) is used to smooth the periodogram, or
equivalently a lag window (also known as weight sequences, Priestley (1981), pp.
437, covariance window, Bentkus and SuSinskas (1982)) W(-) is applied to the sample
auto-covariances. The resulting estimate is:

h) = o= 32 W(s)i(s) cos(sw)
2m Jsl<N

Typical choices of windows include the Féjer window: W(s) = Ijjs<an for some
1 € M < N, for example M = /N; Bartlett window: W(s) = (1—|s|/M)+; Daniell
window, W(s) = sin(ws/M)/(ws/M); see §6.2.3 of Priestley (1981) for more choices
of windows. Bentkus and SuSinskas (1982) has studied optimal L, convergence rate
for the window method over certain classes of smooth spectra.

e Autoregressive spectral estimation (AR approximation), Parzen (1974). A high order

autoregressive model _
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o Mixtures of the above, e.g. the prewhitening technique, §7.4.1 of Priestley (1981).

¢ Maximum entropy (ME) methods, introduced by Burg (1967, 1972). This method is
essentially equivalent to AR method.

o ARMA approximation: similar idea as AR approximation.

They perform well in many cases and have been used frequently in practice. They have
both advantages and disadvantages. For example, window methods have computational
advantages but they may perform poorly in cases of high dynamic range; AR approxima-
tion is suitable only for relatively smooth spectra, Tukey (1978); ARMA procedures are
almost always effective and furnishes attractive interpretations for the derived model; but
it is computationally unrealistic to fit high-order ARMA models, and rigorous theory of
asymptotic properties is lacking.

In this paper, we will develop a technique, based on wavelet decomposition of the
periodogram and reconstruction of the spectrum; our new approach avoids shortcomings
of earlier methods. Qur new approach is computationally efficient; it can estimate spectra
which are nonsmooth at a near-optimal rate; and it can be rigorously analyzed.

It is well known that the asymptotic variances of the empirical wavelet coefficients
are functions of the unknown spectrum, and that non-linear Wavelet Shrinkage procedure
below heavily depends on the asymptotic variances. Since the asymptotic variances are
“proportional” to the coefficients, i.e., the bigger the coefficients at location (j, k), the
higher the noise level at this location. This makes estimation more difficult in practice. In
order to overcome the heteroscedasticity, we therefore consider estimating the log-spectrum.

Suppose we observe a segment Xg, X1, ..., Xon-1 of 2 Gaussian time series with mean
zero and spectral density h, where for simplicity we assume that n = 2™ is dyadic. In
this paper we discuss the following 4-step wavelet shrinkage procedure for estimation of log
spectrum, g = logh:

(1] Calculate the log-periodogram
z1 = log I(wr), l=0,...,n~1,

where w; = {/2n and
2n-1

— __1__ —1tw)2
1) = gl 3 X 1)

Y
[2] Take a standard periodic wavelet transform of (z) to get the empirical wavelet coef-
ficients {y;x}i=12,.m~1,k=0,..n/2i~1-

(3] Apply the soft threshold
8¢(z) = sgn(z)(|z| - 1)+ (2)




to the empirical wavelet coefficients {y; s}, with level-dependent thresholds ¢ = ¢;

according to formula i
tin = —-\/—i-\/logn\/aj logn (3)

where (a3, ..., a10) = (1.29,1.09,0.92,0.77,0.65, 0.54,0.46, 0.39, 0.32, 0.27) for the com-
monly used compactly supported orthogonal wavelet bases (coiflets, daublets and
symmlets, Chapters 6 and 8 of Daubechies, 1992) and some selected n.

[4] Invert the wavelet transform, producing an estimate (gJ) of the log-spectrum at the
Fourier frequencies wj.

This procedure falls in the general category of wavelet shrinkage estimates for noisy
data. Donoho and Johnstone (1992a,b,c), have discussed the application of such thresholded
wavelet transforms for recovering curves from noisy data, where the noise is assumed to
have a Gaussian distribution, and they have proposed the level-independent threshold ¢, =
oy/2log(n), where o is the noise level. Such methods have also been developed in density
estimation: Johnstone, Kerkyacharian and Picard (1992) propose the use of level-dependent
thresholds /7. In general such wavelet shrinkage methods have a number of theoretical
advantages, including near-optimal mean-squared error and near-ideal spatial adaptation.

Recently, the author and others have studied the possibility of using wavelet shrinkage
to de-noise periodogram data. Application of wavelet shrinkage to the log-periodogram is
particularly attractive, Moulin (1993a, b), since the logarithm is the variance stabilizing
transformation for the periodogram, Wahba (1980).

It is easy to apply wavelet shrinkage software designed for Gaussian noise to the log pe-
riodogram, and in some cases acceptable reconstructions have been obtained. However, this
will not always be the case. The noise in the wavelet coefficients of the log-periodogram has
a non-Gaussian character; it reaches high levels somewhat more frequently than Gaussian
theory would predict. Consequently, thresholds set based on Gaussian theory will not be
high enough to completely suppress noise in the coefficients. The thresholding we propose
is based on a careful analysis of the non-Gaussian character, and is somewhat larger than
Gaussian theory would predict.

As an example of the difference between our method and other proposals, we present
in Figure 1 a display for an AR(24) time series: (a) its log spectrum; (b) log periodogram;
and wavelet reconstructions based on (c) our proposal and (d) based on Gaussian theory. It
is visually evident that the spectral estimate based on Gaussian theory has spurious noise
spi}(es, which are unrelated to the true underlying spectrum. More plots for this example,
along with other examples, for different sample sizes and different wavelet bases, are given
at the end of the paper.

The pattern visually evident in this example is confirmed by two theorems which we
prove in this paper.




Theorem 1 Under the Wahba approzimation for log periodograms (see section 2.2 below),
as n — 0o,

P{U[Sgp 195k = EYi k| > tjn]} — 0. (4)

In words, the thresholds are set high enough so that the noise does not surpass them.

Theorem 2 Under the Wahba approzimation for log periodograms and a compactly sup-
ported wavelet basis, at the finest level j=1, as n — oo,

P{sgp . — Eyiel > v2logn} — 1. (5)

Similar results hold at levels 7=2,3, ....

In words: noise spikes are almost surely to be absent for our proposal and almost surely
to be present in a proposal based on Gaussian noise.

The significance of these noise spikes and the need to de-noise is more than cosmetic. In
a recent article, Donoho, Johnstone, Kerkyacharian and Picard (1992) study the Gaussian
white noise model, and show that by exploiting a noise-free property like (4) one can
show that the estimator attains near-optimal reconstruction in a wide variety of norms
simultaneously over a wide variety of smoothness assumptions. Their arguments are general
and abstract and transfer to the present setting after one has established the de-noising
property (4)

If noise-free property like (4) is not maintained, then an inspection of their arguments
will show that the resulting estimate does not achieve near optimal reconstruction in norms
which measure smoothness of the reconstruction, although it may well be true that the error
in £ norm, which does not measure smoothness, is still acceptable.

2 The Choice of Thresholds

Our choice of the thresholds (t;,,) depends on the tail behavior of the empirical coefficients

{yj,k}. Let
p;(t) = max P{|y;x — Ey;il > t} (6)

be the tail probability of y;x, where wavelet coefficient y;x is a standardized linear combi-
nation of the log periodogram ordinates. Then we aim to establish that
A}

n pj(tjn) — 0, n — oo, (7)

uniformly for j=1,2,...,m — 1 as this implies (4) in Theorem 1 (see (15). In this section,
we would like to give two heuristic arguments, upon which our proposed thresholds (3) are
based.




2.1 Normal Approximation

For normally distributed wavelet coefficients
Wik = @k + Ejk
where ;4 ~ N(0,02) are iid, the threshold

tin =tq = 0y/2logn

enjoys a variety of nice theoretical properties, Donoho and Johnstone (1992a, b, c). Under
certain regularity conditions, for j close to m = [log, n] (technically j — o as m — o),
as n — oo, individual empirical wavelet coefficients will be asymptotically normal:

w;x — Ew;x ~ N(0, 72/6)

this follows by applying results of Taniguchi (1979, 1980). Moulin (1993a, b) makes similar
argument. So when the sample size n is large, for coarse levels (j close to m), yj,0, .-, ¥j2i-1
are approximately normally distributed with the same variance 72/6. One may argue that

p;j(my/log(n)/3) < 1 2(1);)7; m>j— 0. (8)

Therefore (7) holds and this leads to the first part of our thresholds.

Here “regularity” refers to the length of memory and the asymptotic normality for the
empirical coefficients not only depends on n (large) and j (large), but also the regularity of
the time series. In general, the longer the memory, the weaker the asymptotic normality.

2.2 Wahba Approximation

For small 7, the normal approximation deteriorates. Under a compactly supported wavelet
basis (chapters 6 and 8 of Daubechies, 1992), for fixed j, the coefficients of the finest level
y;k’s are linear combinations of fized number of {log I(w;)}. For example, with the Haar
wavelet, y; x is just the difference of two adjacent log I(wi)’s.

Consider the following non-Gaussian additive noise model:

zi= g1+ € (9)

[=1,2,..,n—1, where (g;) is the object to be estimated (e.g. log spectrum at frequency
w) and

= log(m/2) +7 (10)

where {n;,4 = 1,2,...,n — 1} are independently x3 = exp(1/2) distributed and y = 0.57721
is the Euler-Mascheroni constant. It can be shown that E¢; = 0 and var(e;) = =2/6.
Wahba (1980) proposed this as a model for the log periodogram, i.e., z = logI(w;) and




g1 ~ log f(wi) — 7. Note that I{wg) ~ x3. Since the influence of this term is negligible for
n large, we will ignore this term in our discussion.

For circulant time series, see §4.3 of Harvey (1989), log I(w;) follows model (9)-(10)
exactly. For general stationary processes, the above model is only asymptotically true (see
Theorem 5.2.6 of Brillinger, 1981). The exact distribution of log periodogram can be found
in Wittwer (1986).

Now we will show that under the model (9)—(10), our advertised thresholds are indeed
adequate for the finer levels. Note that under model (9)-(10), each y; is a standardized

linear combination of z;’s.
Let us use the very finest level, = 1, as an example. Similar results hold for levels

j=12,3,.... Suppose a compactly supported wavelet basis with L coefficients in the dilation
equation. For example, for the Haar wavelet, L =2; D4 wavelet, L =4, etc., more examples
can be found in Chapters 6 and 8 of Daubechies (1992). Then

L

Ne= Z a1Z142k-s

=1
where s is some shift parameter for computational purpose (e.g. s = L/2) and }a; =
0, 3" a? = 1. Inequalities below leads to the threshold (3).

Let a = max;<i<z |ai], from the proofs of the Theorems (see (16) and (22) of Appendix),

we can show that for ¢ large,

0.25¢~2%/ < py (1) < (et/aL)le™?°. (11)
Hence, for n large, there is a constant 4 so that
0.25 A(logn)*
—ala < pi(alogn) < ‘%— (12)

Hence thresholds at the finest level must have the form: alogn, for some constant o > a,
and then

npi(alog(2n)) =0, n — . (13)

Note that the wavelet filters obey &, a? = 1, which implies a < 1. Hence, for the finest
level, taking @ = 1 always guarantees (13) and (7) follows for our proposal ¢; .
In general, there are L; non-zero constants a; ; so that
L;
Yik = D @i jZighas (14)

. i==1

where @ in subscript is interpreted modulo n. Let a; = max; |a; ;|, then we have
Li<2(L-1)-L+2 and q; < a2707V/2

where L is the length of the filter and a = sup;5,; 20-1/2g; < 1.534. In Tables 1 and 2 of
Appendix, we list some L;’s and 2(i-1)/ 2a,’s for the commonly used wavelets (apparently
they converge to sup, [¢¥(z)|). This leads to the threshold (3).

7




3 Numerical Examples

In this section, we study four time series and compare our proposed method with the one
based on Gaussian theory.

Figure 1 contains an AR(24) signal, with coefficients:
-2.5216281 4.7715359  -7.9199915 11.9769211 -16.0778828
20.6343346 -25.0531521 28.8738136 -31.8046265 34.0071373
-34.7700272  34.3151321 -32.7861099 30.2861233 -26.7109356
22.8838310 -18.7432098 14.5717688 -10.7177744 7.5322194
-4.7226319 2.6807923  -1.3391306 0.5167125

Figure 2 contains a white noise siganl, the true log spectral density in this case is g(w) =
log(c?/27), a constant.

Figure 3 contains an MA(15001) time series with coefficients

sin(7n/2)
n ?

a; = 7('/4, Qnil = n= 1,2,,15000

AR method is compared in this example.

Figure 4 contains the Sunspots signal, WaveShrink estimate with comparisons with an AR
estimate from SPLUS function spec.ar. An AR(2) model, suggested by Priestley (1981),
pp. 882, is also plotted.
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4 Appendix

4.1 Tables

[ -||L1]H1|L2{H2|L3|H3[L4|H4[L5|H5|L6|H6]
C6 108510851095 1.101.02[1.28[1.07|1.40 | 1.10] 1.48|1.13] 1.53
C12 0811081 ]0.85]1.01 | 0.86 | 1.08 [ 0.87 | 1.10 | 0.87 | 1.11 | 0.87 | 1.12
Ci8 10791 0.79 | 0.81 | 0.96 | 0.81 | 0.99 | 0.81 [ 1.00 | 0.81 | 1.00 | 0.81 | 1.00
C24 [/ 0.78 | 0.78 | 0.79 | 0.93 [ 0.79 | 0.94 | 0.79 [ 0.95 | 0.79 | 0.95 | 0.79 | 0.95
C30 07710771078 1091 ]0.78 | 0.91 | 0.78 [ 0.92 ] 0.78 | 0.92 | 0.78 | 0.92
D2 [0.7110.71]0711071]071]071]0.71]0.71}0.71]0.71]0.71]0.71
D4 || 0.84 | 0.84 | 0.95 | 1.08 | 0.99 | 1.23 | 1.00 | 1.28 | 1.00 | 1.29 | 0.99 | 1.28
D6 || 0.81 | 0.81 | 0.83 | 0.98 | 0.86 | 1.03 [ 0.89 | 1.11 [ 0.90 | 1.15] 0.90 | 1.18
DR 10.7110.7110.790.7710.78 ] 0.95 [ 0.79 | 0.96 | 0.79 | 0.94 | 0.79 | 0.96
Di0 1 0.72 | 0.72 | 0.81 | 0.94 | 0.74 | 0.89 | 0.75 | 0.83 | 0.76 | 0.84 | 0.76 | 0.84
D12 11 0.75 1 0.75 | 0.75 | 0.92 | 0.74 | 0.80 | 0.73 | 0.80 | 0.73 | 0.80 | 0.73 | 0.8
Di4 || 0.73 | 0.73 | 0.74 | 0.79 | 0.73 1 0.82 [ 0.73 | 0.79 | 0.73 | 0.79 | 0.73 | 0.79
D161 0.68 1 0.68 | 0.74 | 0.82 | 0.71 [ 0.82 [ 0.71 ] 0.79 | 0.71 | 0.78 | 0.71 | 0.78
Dig || 0.66 | 0.66 | 0.72 | 0.87 | 0.70 | 0.74 [ 0.70 | 0.75 | 0.70 | 0.76 | 0.70 | 0.76
D20 11 0.69 1 0.69 | 0.69 | 0.82 | 0.68 | 0.75 ] 0.68 | 0.73 | 0.69 | 0.72 [ 0.69 | 0.73
S8 110.8010.80]0851099]085]1.05]0.85]1.05]0.85]1.06|0.86 | 1.07
510 11 0.72 | 0.72 | 0.77 | 0.77 | 0.78 | 0.89 [ 0.79 | 0.93 | 0.79 | 0.94 | 0.79 | 0.95
S12 11 0.79 | 0.79 | 0.80 | 0.95 | 0.80 | 0.97 | 0.81 ] 0.97 | 0.81 | 1.00 | 0.81 | 1.00
S14 | 0.7710.7710.79 1 0.92 | 0.79 ] 0.95 | 0.77 [ 0.92 | 0.77 | 0.89 | 0.77 | 0.89
S16 11 0.78 1 0.78 1 0.78 | 0.91 | 0.78 | 0.92 | 0.79 [ 0.93 | 0.79 [ 0.95 | 0.79 | 0.95
S18 11 0.7210.7210.76 | 0.76 | 0.77 | 0.89 | 0.77 | 0.89 | 0.77 | 0.89 | 0.77 | 0.89
$20 11 0.77 1 0.77 | 0.77 | 0.89 | 0.77 | 0.89 | 0.78 | 0.91 | 0.78 | 0.92 | 0.78 | 0.92

Table 1: Maximum Coefficients, Lj low-pass cascade filter at level j, Hj high-pass cascade
filter at level j. C for Coiflets; D for Daublets, Daubechies’ original wavelets; S for Symmlet.
Daubechies’ near-symmetric wavelets.
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[ [L=2|L=4 |L=6|L=8 | L=10 | L=12 | L=14 | L=16 | L=18 | L=20 |
=11 2 4 6 8 10 12 14 16 18 | 20
=2 4 110 [ 16 [ 22 ] 28 34 | 40 46 52 | 58
=3 8 [ 22 [ 36 | 5 [ 64 78 92 [ 106 | 120 | 134
j=41]] 16 | 46 | 76 | 106 | 136 | 166 | 196 | 226 | 256 | 286
j=5 32 | 94 [ 156 [ 218 | 280 | 342 | 404 | 466 | 528 | 590
j=6 || 64 | 190 | 316 [ 442 | 568 | 694 [ 820 | 946 [ 1072 | 1198

Table 2: Number of Non-zero Coefficients, L is the length of the filter and j = level.

4.2 Proofs of the Theorems
Proof of Theorem 1: First of all,

m—1

P{U[Sgp lvik—Evixl>tinl} < P{Sup 19ik — EYjk| > tjn}
J Jj=1
m-—1
< Z 2Jp.‘l(t.7 n)<n L<na.x Pi(tin) (15)
i=1

Under model (9) and (10), from (14), coefficients in level j can be written as
L;
Yik = Eyje = ) 0 j€iqu
=1

with 3 a;; = 0 and 3, a?; = 1. Let a; = max;|a; ;|- ;
The moment generating function for ¢ ~ log(x3/2) is

M(u)= Ee® =T(u+1)

where T' is Euler’s Gamma function. Let
L;
Aj(t) = mf{ —st+ > _(logT(1 + a; ;s) + logl"(l - a;9))} L

i=1

It can be shown that for any random variable X with EX =0,
. P(X >a) < e *Ee'X

for all @ > 0 and ¢. Then .
pi(t) < M1

and therefore,

max p;(t) < sup A = exp( sup AZ () (16)
1<5<m <j<m 1<j<m

14




Let £, = (logn)7/® and consider
e —%—“L“,’ L L < tn
! ﬂ\/Iogn L; >4,
For the thresholds 1
alogn
tjn = 1/g4 Vﬂ\/logn
we have t;, > tj. Therefore,

sup Piltin) < S Pi(t) < exp( s Aj(t7))

1<j<m
and
sup Aj(t;) < sup A3(E; )v sup A“(t)
. alogn .
= sup Aj( 1/g4 )\/ sup A(ﬁ\/iogn)
1<L;<tn

When L; < £, = (logn)”/ and n large, we have
alogn
1 / 3 ,/ ;> aJ
Consider the following non-positive function H, defined on R4 by
H(t)=—-t+1+logt
Lemma 1 Fort > a;L;,
1
* < L: —
AJ(t) - LJ‘H(aJLJ)

and
alogn

L H( 3/

) | in L for largen and1 < L < 45,

The proof will be given later. Combining (16) and Lemma 1 yields the second part of (11).

From the Lemma,

alogn alogn
sup Aj(——=) < sup L;H
’ 15L,I<)e,, i L}/‘* ) < 1<L,gen o aL3/4 )
< H(%logn) = —;logn (1 +0(1))
When L; > £,, we have
BV/logn < BLYT

and

(19)

(17)

(18)




Lemma 2 For §; € (0,1) and 0 < t < 72§;/6a;,
2

O P
A0 < - Tes;

In particular, for n large and §; = GﬁajL?ﬁ/w"’ = L;l/“ < (logn)~1/12,

. 32
A5(t) € == (1+o(1) t< LY,

The proof will be given later.
From the Lemma,

352 log n

sup Aj(Bviogn) < ———=—(1 + o(1)). (20)

£n<Lj<n

Combining (18), (19) and (20), we have

sup Aj(#7) < ( /\ )10gn(1+o(1))

1<i<m
Therefore, for any & > a and 3 > Tr/\/§,

n sup pi(tia) < nexp( sup Al(t;n)) = o(1).
<i<m

and this completes the proof of Theorem 1.

Proof of Lemma 1: First of all, it can be shown that for0 < z < 1,T(14+2z) <T(1-z)
and T(z) < 1/z. (In fact, [(z) = o~ 152, SEEE and (1+ 1/k)° < 1+ 2/k when
0 < z < 1.) Therefore,

L
Ai(t) < ' |I<I}f {-st+ Zlog I'(1+ ai;s)}
3 G.J :_1

<

L 0<s<1

and the first part of the Lemma can be easily solved from the last expression.
For n large, such that Cp, = aa~llogn > 11 and £, = (logn)"/® < (Cn/11)*3. Let
h(z ) = zH(Cnz~%*), then for 1 < z < £,, h'(z) is increasing in z and A'({,) < 0.
Therefore, A'(z) < 0 for 1 < z < £, and this means A(z) is decreasing in z. The proof is
completed.

Proof of Lemma 2: Let K(z) =logI'(1 + z), then for £ > -1, by Taylor expansion,

K(z)= K(0)+ K'(0)z + 2°K"(6z)/2 = —yz + 2*K"(6z)/2, (21)
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where v = 0.5772.... is the Euler constant and 8§ = 6(z) € (0,1). Note that K'(z — 1)
is the famous Psi function. By the properties of Psi function (Davis (1935), pp. 11),
K"(z) = Y 2,(k+z)~% and K"(0) = x%/6. Hence, for any é € (0,1), we have K"(-§) <
K"(0) + 36 = K5 and for z > =4,

K(z) < -7z + 2 Ks/2.
Recall that $";ai; =0 and ¥;a?; = 1,
inf{-st + Z; K(ai;js)}

inf {-st+ Z(—'ya;,js + a?,jsng/2)}

A3(t)

IA

s1<8;/a;

= mf -8t+S2K 2 : |
a1 o2} 1

and Lemma 2 follows immediately.

Proof of Theorem 2: To prove Theorem 2, we need a lower bound for p;(t). It is easy
to show that if X,Y are independent, then for any s,¢ > 0,

P{X+Y|>t} > P{IX| < s}P{lY| > t+s}.

Suppose |a;| = max |a;| = a. There exists to > 0 such that for ¢ > 2o,

B =

L
P{|Y_ ailog(m/2)| < t} 2
=2
Also notice that for 0 <z < 1,1-¢7% > z/2. Then

L
p(t) = P{|D_alog(m/2)| >t}
=1

L
P{|ay log(m/2)| > 2t} P{| 3 ailog(m/2)| < t}

>
=2
> P{jlogm /D] > 2}
> ZP{log(m/2) < -2}
' = %{1 — exp(—e~#/*)} > :11-6"%/“. (22)

and this completes the proof of Lemma 1.

From (12) we can see that for any constant C < a/2,

np1(Clogn) — o0, n— co.
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In particular,
2
np1(v2logn) = npy( 1Fg—-;;lcgn) — 00, n— oo

There exists K > 0 such that {y;;x} are independent (linear combinations over disjoint
intervals). Therefore,

P{SI;P ly1k — Eyi il > V2logn} > P{sup|y1ix — Eyr,ix| > v2logn}

n/2K

1- I @ -p(v2logn)) — 1,

=0

i

and this implies the Theorem 2.
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